Sustainable development of three distinct starch based bio-composites reinforced with the cotton spinning waste collected from fiber preparation stage

Composites are new materials that combine two or more distinct components with diverse properties to create a new material with improved properties. The goal of this endeavor was to use fiber preparation wastes, or waste from cotton spinning mill blow room and carding, to produce bio composites base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-05, Vol.10 (10), p.e31534, Article e31534
Hauptverfasser: Islam, Md. Redwanul, Karim, Fahmida-E-, Al Hasan, Asif, Afrose, Tawsisa Dil, Hasan, Md. Sakib, Sikdar, Hasib, Siddique, Abu Bakr, Begum, Hosne Ara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Composites are new materials that combine two or more distinct components with diverse properties to create a new material with improved properties. The goal of this endeavor was to use fiber preparation wastes, or waste from cotton spinning mill blow room and carding, to produce bio composites based on starch. The matrix was prepared using the starches of potatoes, maize, and arrowroot, and any remaining reinforcing material was used. A hand layup technique was used to make the bio-composites. Tensile, bending, density, water absorbency, and SEM testing were among the studies used to illustrate the starch-based biodegradable materials. The maximum tensile strength of 0.49 MPa is displayed by sample AB. The resistive bending force of 3.71 MPa is greatest in Sample AB. The most uniform combination of reinforcing material (wastage cotton) and matrix is seen in PB's SEM picture. Among the samples, AB had the greatest density value, measuring 0.35 g/cm3. The sample PC had the highest absorption findings in both water and the 5 % HCl combination because carding waste had more fiber than blow room and fiber absorbs more water. The resultant bio-composites made of starch had the potential to replace Styrofoam.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e31534