Machine Learning Demonstrates High Accuracy for Disease Diagnosis and Prognosis in Plastic Surgery

Machine learning (ML) is a set of models and methods that can detect patterns in vast amounts of data and use this information to perform various kinds of decision-making under uncertain conditions. This review explores the current role of this technology in plastic surgery by outlining the applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plastic and reconstructive surgery. Global open 2021-06, Vol.9 (6), p.e3638-e3638
Hauptverfasser: Mantelakis, Angelos, Assael, Yannis, Sorooshian, Parviz, Khajuria, Ankur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning (ML) is a set of models and methods that can detect patterns in vast amounts of data and use this information to perform various kinds of decision-making under uncertain conditions. This review explores the current role of this technology in plastic surgery by outlining the applications in clinical practice, diagnostic and prognostic accuracies, and proposed future direction for clinical applications and research. EMBASE, MEDLINE, CENTRAL and ClinicalTrials.gov were searched from 1990 to 2020. Any clinical studies (including case reports) which present the diagnostic and prognostic accuracies of machine learning models in the clinical setting of plastic surgery were included. Data collected were clinical indication, model utilised, reported accuracies, and comparison with clinical evaluation. The database identified 1181 articles, of which 51 articles were included in this review. The clinical utility of these algorithms was to assist clinicians in diagnosis prediction (n=22), outcome prediction (n=21) and pre-operative planning (n=8). The mean accuracy is 88.80%, 86.11% and 80.28% respectively. The most commonly used models were neural networks (n=31), support vector machines (n=13), decision trees/random forests (n=10) and logistic regression (n=9). ML has demonstrated high accuracies in diagnosis and prognostication of burn patients, congenital or acquired facial deformities, and in cosmetic surgery. There are no studies comparing ML to clinician's performance. Future research can be enhanced using larger datasets or utilising data augmentation, employing novel deep learning models, and applying these to other subspecialties of plastic surgery.
ISSN:2169-7574
2169-7574
DOI:10.1097/GOX.0000000000003638