Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-03, Vol.7 (1), p.10858-10858, Article 10858
Hauptverfasser: Li, Junxue, Xu, Yadong, Aldosary, Mohammed, Tang, Chi, Lin, Zhisheng, Zhang, Shufeng, Lake, Roger, Shi, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law T n with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics. Future spintronic devices may be based on the transport of electronic spin without an associated charge current in thin film materials. Here, the authors demonstrate the interconversion of spin current at the interface between a normal metal and magnetic insulator via magnon-mediated current drag.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms10858