Bias Correction in Monthly Records of Satellite Soil Moisture Using Nonuniform CDFs

It is important to eliminate systematic biases in the field of soil moisture data assimilation. One simple method for bias removal is to match cumulative distribution functions (CDFs) of modeled soil moisture data to satellite soil moisture data. Traditional methods approximate numerical CDFs using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in meteorology 2018-01, Vol.2018 (2018), p.1-11
Hauptverfasser: Wang, Yuexing, Zhang, Chi, Shan, Huiling, Wang, Shan, Shi, Chun-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is important to eliminate systematic biases in the field of soil moisture data assimilation. One simple method for bias removal is to match cumulative distribution functions (CDFs) of modeled soil moisture data to satellite soil moisture data. Traditional methods approximate numerical CDFs using 12 or 20 uniformly spaced samples. In this paper, we applied the Douglas–Peucker curve approximation algorithm to approximate the CDFs and found that three nonuniformly spaced samples can achieve the same reduction in standard deviation. Meanwhile, the matching results are always closely related to the temporal and spatial availability of soil moisture observed by automatic soil moisture station (ASM). We also applied the new nonuniformly spaced sampling method to a shorter time series. Instead of processing a whole year of data at once, we divided it into 12 datasets and used three nonuniformly spaced samples to approximate the model data’s CDF for each month. The matching results demonstrate that NU-CDF3 reduced the SD, improved R, and reduced the RMSD in over 70% of the stations, when compared with U-CDF12. Additionally, the SD and RMSD have been reduced by over 4% with R improved by more than 9%.
ISSN:1687-9309
1687-9317
DOI:10.1155/2018/1908570