Quaternion Matrix Factorization for Low-Rank Quaternion Matrix Completion

The main aim of this paper is to study quaternion matrix factorization for low-rank quaternion matrix completion and its applications in color image processing. For the real-world color images, we proposed a novel model called low-rank quaternion matrix completion (LRQC), which adds total variation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-05, Vol.11 (9), p.2144
Hauptverfasser: Chen, Jiang-Feng, Wang, Qing-Wen, Song, Guang-Jing, Li, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main aim of this paper is to study quaternion matrix factorization for low-rank quaternion matrix completion and its applications in color image processing. For the real-world color images, we proposed a novel model called low-rank quaternion matrix completion (LRQC), which adds total variation and Tikhonov regularization to the factor quaternion matrices to preserve the spatial/temporal smoothness. Moreover, a proximal alternating minimization (PAM) algorithm was proposed to tackle the corresponding optimal problem. Numerical results on color images indicate the advantages of our method.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11092144