An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials
The Miller–Ross-type Poisson distribution is an important model for plenty of real-world applications. In the present analysis, we study and introduce a new class of bi-univalent functions defined by means of Gegenbauer polynomials with a Miller–Ross-type Poisson distribution series. For functions i...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2022-07, Vol.10 (14), p.2462 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Miller–Ross-type Poisson distribution is an important model for plenty of real-world applications. In the present analysis, we study and introduce a new class of bi-univalent functions defined by means of Gegenbauer polynomials with a Miller–Ross-type Poisson distribution series. For functions in each of these bi-univalent function classes, we have derived and explored estimates of the Taylor coefficients a2 and a3 and Fekete-Szegö functional problems for functions belonging to these new subclasses. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10142462 |