Multisource DOA Estimation in Impulsive Noise Environments Using Convolutional Neural Networks

This work proposes an effective high-resolution multisource direction-of-arrival (DOA) estimation method in impulsive noise scenarios based on convolutional neural networks (CNNs). First of all, the array observation matrix is preprocessed and fed into a denoising network to suppress outliers and fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of antennas and propagation 2022-03, Vol.2022, p.1-11
Hauptverfasser: Chen, Dong, Joo, Young Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work proposes an effective high-resolution multisource direction-of-arrival (DOA) estimation method in impulsive noise scenarios based on convolutional neural networks (CNNs). First of all, the array observation matrix is preprocessed and fed into a denoising network to suppress outliers and filter out impulsive noise. Secondly, the denoising network output is fed into a model order selection network to estimate the model order. Next, according to the estimation, the denoising network output is fed into a DOA subnetwork corresponding to the model order in a DOA network to estimate the DOA of each signal. Comprehensive simulations demonstrate that, in the presence of impulsive noise, the proposed method is effective and superior in accuracy and computation speed for multisource DOA estimation. Therefore, it is concluded that CNN can be well generalized for DOA estimation.
ISSN:1687-5869
1687-5877
DOI:10.1155/2022/5325076