Assessing encapsulation of curcumin in cocoliposome: In vitro study

Curcumin has been known and used in the medical and industrial world. One way to improve its stability, bioavailability and its medical applications is using encapsulation method. In this research, we studied cocoliposome (coconut liposome) as the encapsulation material. The encapsulation efficiency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open Chemistry 2021-03, Vol.19 (1), p.358-366
Hauptverfasser: Hudiyanti, Dwi, Al Khafiz, Muhammad Fuad, Anam, Khairul, Siahaan, Parsaoran, Suyati, Linda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Curcumin has been known and used in the medical and industrial world. One way to improve its stability, bioavailability and its medical applications is using encapsulation method. In this research, we studied cocoliposome (coconut liposome) as the encapsulation material. The encapsulation efficiency (EE), loading capacity (LC), release rate (RR), as well as the free radical scavenging activity, measured by inhibition ratio (IR), of curcumin in encapsulation product were studied on varying cholesterol compositions and in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.4) conditions. We found that curcumin encapsulation in cocoliposome (CCL) formulation was influenced by cholesterol composition and pH conditions. The EE, LC and free radical scavenging activity diminished under both the SIF and SGF conditions when the cholesterol concentration enhanced. However, the RR increased as the cholesterol intensified. The condition to acquire the most favorable encapsulation parameter values was at 10% cholesterol composition. Furthermore, the IR results at 10% cholesterol concentration of CCL was 67.70 and 82.13% in SGF and SIF milieu, respectively. The CCL formulation thrived better under SIF conditions for free radical scavenging activities.
ISSN:2391-5420
2391-5420
DOI:10.1515/chem-2021-0036