Location Matters-Can a Smart Golf Club Detect Where the Club Face Hits the Ball?

In golf, the location of the impact, where the clubhead hits the ball, is of imperative nature for a successful ballflight. Direct feedback to the athlete where he/she hits the ball could improve a practice session. Currently, this information can be measured via, e.g., dual laser technology; howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-12, Vol.23 (24), p.9783
Hauptverfasser: Hollaus, Bernhard, Heyer, Yannic, Steiner, Johannes, Strutzenberger, Gerda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In golf, the location of the impact, where the clubhead hits the ball, is of imperative nature for a successful ballflight. Direct feedback to the athlete where he/she hits the ball could improve a practice session. Currently, this information can be measured via, e.g., dual laser technology; however, this is a stationary and external method. A mobile measurement method would give athletes the freedom to gain the information of the impact location without the limitation to be stationary. Therefore, the aim of this study was to investigate whether it is possible to detect the impact location via a motion sensor mounted on the shaft of the golf club. To answer the question, an experiment was carried out. Within the experiment data were gathered from one athlete performing 282 golf swings with an 7 iron. The impact location was recorded and labeled during each swing with a Trackman providing the classes for a neural network. Simultaneously, the motion of the golf club was gathered with an IMU from the Noraxon Ultium Motion Series. In the next step, a neural network was designed and trained to estimate the impact location class based on the motion data. Based on the motion data, a classification accuracy of 93.8% could be achieved with a ResNet architecture.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23249783