A Novel Data-Driven Magnetic Resonance Spectroscopy Signal Analysis Framework to Quantify Metabolite Concentration
Developing tools for precise quantification of brain metabolites using magnetic resonance spectroscopy (MRS) is an active area of research with broad application in non-invasive neurodegenerative disease studies. The tools are mainly developed based on black box (data-driven), or basis sets approach...
Gespeichert in:
Veröffentlicht in: | Algorithms 2020-05, Vol.13 (5), p.120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing tools for precise quantification of brain metabolites using magnetic resonance spectroscopy (MRS) is an active area of research with broad application in non-invasive neurodegenerative disease studies. The tools are mainly developed based on black box (data-driven), or basis sets approaches. In this study, we offer a multi-stage framework that integrates data-driven and basis sets methods. We first use truncated Hankel singular value decomposition (HSVD) to decompose free induction decay (FID) signals into single tone FIDs, as the data-driven stage. Subsequently, single tone FIDs are clustered into basis sets while using initialized K-means with prior knowledge of the metabolites, as the basis set stage. The generated basis sets are fitted with the magnetic resonance (MR) spectra while using a linear constrained least square, and then the metabolite concentration is calculated. Prior to using our proposed multi-stage approach, a sequence of preprocessing blocks: water peak removal, phase correction, and baseline correction (developed in house) are used. |
---|---|
ISSN: | 1999-4893 1999-4893 |
DOI: | 10.3390/a13050120 |