Artificial Neural Network and Remote Sensing combined to predict the Aboveground Biomass in the Cerrado biome

Cerrado is the second largest biome in Brazil, and it is responsible for providing us several ecosystem services, including the functions of storing Carbon and biodiversity conservation. In this study, we developed a modeling approach to predict the Aboveground biomass (AGB) in Cerrado vegetation us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anais da Academia Brasileira de Ciências 2024-01, Vol.96 (3), p.e20221041
Hauptverfasser: Oliveira, Paula L G, Matricardi, Eraldo A T, Miguel, Eder P, Marimon Júnior, Ben Hur, Rezende, Alba Valéria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cerrado is the second largest biome in Brazil, and it is responsible for providing us several ecosystem services, including the functions of storing Carbon and biodiversity conservation. In this study, we developed a modeling approach to predict the Aboveground biomass (AGB) in Cerrado vegetation using Artificial Neural Networks (ANNs), vegetation indices retrieved from RapidEye satellite imagery, and field data acquired within the Federal District territory, Brazil. Correlation testing was performed to identify potential vegetation index candidates to be used as input in the AGB modeling. Several ANNs were trained to predict the AGB in the study area using vegetation indices and field data. The optimum ANN was selected according to criteria of mean error of the estimate, correlation coefficient, and graphical analysis. The best performing ANN showed a predictive power of 90% and RMSE less than 17%. The validation tests showed no significant difference between the observed and ANN-predicted values. We estimated an average AGB of 16.55± 8.6 Mg.ha-1 in shrublands in the study area. Our study results indicate that vegetation indices and ANNs combined could accurately estimate the AGB in the Cerrado vegetation in the study area, showing to be a promising methodological approach to be broadly applied throughout the Cerrado biome.
ISSN:0001-3765
1678-2690
1678-2690
DOI:10.1590/0001-3765202420221041