Effect of Mechanobiology of Cell Response on Titanium with Multilayered Aluminum Nitride/Tantalum Thin Film

In the present study, the piezoelectric aluminum nitride (AlN)/tantalum (Ta) (PAT) thin film was investigated as a biocompatible film and osseointegrated with biomedical devices such as implants. The stress variation on the interaction of cells with the PAT surface was investigated using osteoblast-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-01, Vol.10 (2), p.645
Hauptverfasser: Huang, Mao-Suan, Yu, Shang-Yang, Chiang, Pao-Chang, Huang, Bai-Hung, Saito, Takashi, Huang, Chien-Chia, Pai, Fang-Tzu, Wu, Chia-Yu, Lan, Wen-Chien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, the piezoelectric aluminum nitride (AlN)/tantalum (Ta) (PAT) thin film was investigated as a biocompatible film and osseointegrated with biomedical devices such as implants. The stress variation on the interaction of cells with the PAT surface was investigated using osteoblast-like cells (MG-63) and fibroblast cells (NIH3T3). A singular behavior was observed on the PAT film with a (002) texture, in which the MG-63 cells were more dispersed and displayed longer and more filopodia than the NIH3T3 cells. Moreover, the MG-63 cells showed ingrowth, adherence, and proliferation on the PAT film surface. The MG-63 cells had more obvious stress variation than the NIH3T3 cells in the differentiation and proliferation. The mechanobiological reaction to cell differentiation and proliferation not only caused osseointegration, but also reduced the surface activation energy, thus enhancing bone remodeling. The formation of a nanopolycrystalline PAT film is believed to enhance the mechanobiological effect, promoting osseointegration.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10020645