A Characterization of Multipliers of the Herz Algebra

For the characterization of multipliers of Lp(Rd) or more generally, of Lp(G) for some locally compact Abelian group G, the so-called Figa-Talamanca–Herz algebra Ap(G) plays an important role. Following Larsen’s book, we describe multipliers as bounded linear operators that commute with translations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2023-05, Vol.12 (5), p.482
1. Verfasser: Feichtinger, Hans G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the characterization of multipliers of Lp(Rd) or more generally, of Lp(G) for some locally compact Abelian group G, the so-called Figa-Talamanca–Herz algebra Ap(G) plays an important role. Following Larsen’s book, we describe multipliers as bounded linear operators that commute with translations. The main result of this paper is the characterization of the multipliers of Ap(G). In fact, we demonstrate that it coincides with the space of multipliers of Lp(G),∥·∥p. Given a multiplier T of (Ap(G),∥·∥Ap(G)) and using the embedding (Ap(G),∥·∥Ap(G))↪C0(G),∥·∥∞, the linear functional f↦[T(f)(0)] is bounded, and T can be written as a moving average for some element in the dual PMp(G) of (Ap(G),∥·∥Ap(G)). A key step for this identification is another elementary fact: showing that the multipliers from Lp(G),∥·∥p to C0(G),∥·∥∞ are exactly the convolution operators with kernels in Lq(G),∥·∥q for 1
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms12050482