Principle of Organization for Laboratory Stand of the Electric Drive with a Real Regulatory System No Time Scaling

The existing practical training of specialists in the field of the electric drive is recognized as insufficient, not allowing them to conduct independently a complex of adjustment works or works on elimination of refusals. All known virtual methods of research of electric drives are scaled in time t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SHS web of conferences 2021, Vol.100, p.6002
Hauptverfasser: Pirozhenko, Andrii, Modlo, Yevhenii, Shaida, Ruslan, Batarieiev, Viktor, Zhukov, Mykola, Drukker, Mykhailo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existing practical training of specialists in the field of the electric drive is recognized as insufficient, not allowing them to conduct independently a complex of adjustment works or works on elimination of refusals. All known virtual methods of research of electric drives are scaled in time therefore at the trained skills on use of the measuring and registering devices during the work on real installation don't develop, and also skills on work with real knots of control systems for control of the set drive modes. We propose a stand consisting of a real system of regulation and the model of the power drive to work without time scale, thus significantly closer to the actual laboratory setting drive. The structure of the laboratory stand on the basis of the engine of a direct current of independent excitement with the reversible thyristor converter is in details considered. It is proved that an optimal algorithm for the simulation of three-phase bridge converter operating at anchor chain is an algorithm which rooms include a thyristor and of the remaining thyristors allows you to choose the design scheme and carry out the integration of equations describing electric processes in the circuit detect a change in state of the thyristors and the transition to other design scheme. Given the discrete model and considered design scheme of three-phase bridge Converter in a normal mode switching thyristors and emergency mode, if false turn on of the thyristor during commutation. Mathematical model of the device - the solution of differential equations by numerical integration of the Runge-Kutta. Proposed hardware mathematical model based on the family of microcomputer ARM СortexTM fourth generation.
ISSN:2261-2424
2416-5182
2261-2424
DOI:10.1051/shsconf/202110006002