In Vivo Suppression of HIV Rebound by Didehydro-Cortistatin A, a “Block-and-Lock” Strategy for HIV-1 Treatment
HIV-1 Tat activates viral transcription and limited Tat transactivation correlates with latency establishment. We postulated a “block-and-lock” functional cure approach based on properties of the Tat inhibitor didehydro-Cortistatin A (dCA). HIV-1 transcriptional inhibitors could block ongoing viremi...
Gespeichert in:
Veröffentlicht in: | Cell reports (Cambridge) 2017-10, Vol.21 (3), p.600-611 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | HIV-1 Tat activates viral transcription and limited Tat transactivation correlates with latency establishment. We postulated a “block-and-lock” functional cure approach based on properties of the Tat inhibitor didehydro-Cortistatin A (dCA). HIV-1 transcriptional inhibitors could block ongoing viremia during antiretroviral therapy (ART), locking the HIV promoter in persistent latency. We investigated this hypothesis in human CD4+ T cells isolated from aviremic individuals. Combining dCA with ART accelerates HIV-1 suppression and prevents viral rebound after treatment interruption, even during strong cellular activation. We show that dCA mediates epigenetic silencing by increasing nucleosomal occupancy at Nucleosome-1, restricting RNAPII recruitment to the HIV-1 promoter. The efficacy of dCA was studied in the bone marrow-liver-thymus (BLT) mouse model of HIV latency and persistence. Adding dCA to ART-suppressed mice systemically reduces viral mRNA in tissues. Moreover, dCA significantly delays and reduces viral rebound levels upon treatment interruption. Altogether, this work demonstrates the potential of block-and-lock cure strategies.
[Display omitted]
•Didehydro-Cortistatin A (dCA) reduces HIV transcription and reactivation from latency•dCA suppresses viral rebound after treatment interruption in HIV+ humanized BLT mice•dCA promotes epigenetic silencing of the HIV-1 promoter•“Block-and-lock” approach is a viable alternative for a functional HIV cure
Tat inhibitors are amenable to functional cure approaches, which aim to reduce residual viremia during ART and limit viral rebound during treatment interruption. Using didehydro-Cortistatin A (dCA), Kessing et al. demonstrate the concept in human CD4+ T cells from aviremic individuals and in the bone marrow-liver-thymus mouse model of HIV latency. |
---|---|
ISSN: | 2211-1247 2211-1247 |
DOI: | 10.1016/j.celrep.2017.09.080 |