Improving Network-Based Anomaly Detection in Smart Home Environment
The Smart Home (SH) has become an appealing target of cyberattacks. Due to the limitation of hardware resources and the various operating systems (OS) of current SH devices, existing security features cannot protect such an environment. Generally, the traffic patterns of an SH IoT device under attac...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2022-07, Vol.22 (15), p.5626 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Smart Home (SH) has become an appealing target of cyberattacks. Due to the limitation of hardware resources and the various operating systems (OS) of current SH devices, existing security features cannot protect such an environment. Generally, the traffic patterns of an SH IoT device under attack often changes in the Home Area Network (HAN). Therefore, a Network-Based Intrusion Detection System (NIDS) logically becomes the forefront security solution for the SH. In this paper, we propose a novel method to assist classification machine learning algorithms generate an anomaly-based NIDS detection model, hence, detecting the abnormal SH IoT device network behaviour. Three network-based attacks were used to evaluate our NIDS solution in a simulated SH test-bed environment. The detection model generated by traditional and ensemble classification Mechanical Learning (ML) methods shows outstanding overall performance. The accuracy of all detection models is over 98.8%. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22155626 |