Antibiotic-resistant bacteria in hospital wastewater treatment plant effluent and the possible consequences of its reuse in agricultural irrigation
Wastewater from hospitals should be monitored precisely and treated properly before discharge and reuse to avoid epidemic and pandemic complications, as it contains hazardous pollutants for the ecosystem. Antibiotic residues in treated hospital wastewater effluents constitute a major environmental c...
Gespeichert in:
Veröffentlicht in: | Frontiers in microbiology 2023-04, Vol.14, p.1141383-1141383 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wastewater from hospitals should be monitored precisely and treated properly before discharge and reuse to avoid epidemic and pandemic complications, as it contains hazardous pollutants for the ecosystem. Antibiotic residues in treated hospital wastewater effluents constitute a major environmental concern since they resist various wastewater treatment processes. The emergence and spread of multi-drug-resistant bacteria, that cause public health problems, are therefore always a major concern. The aims and objectives of this study were mainly to characterize the chemical and microbial properties of the hospital effluent of wastewater treatment plant (WWTP) before discharge to the environment. Special attention was paid to the presence of multiple resistant bacteria and the effects of hospital effluent reuse in irrigation on zucchini as an economically important plant. The risk of cell-free DNA carrying antibiotic resistance genes contained in the hospital effluent as a long-lasting hazard had been discussed. In this study, 21 bacterial strains were isolated from the effluent of a hospital WWTP. Isolated bacteria were evaluated for multi-drug resistance ability against 5 antibiotics (Tetracycline, Ampicillin, Amoxicillin, Chloramphenicol, and Erythromycin) at a concentration of 25 ppm. Out of them, three isolates (AH-03, AH-07, and AH-13) were selected because they recorded the highest growth in presence of tested antibiotics. Selected isolates were identified using 16S rRNA gene sequence homology as
(AH-03),
(AH-07), and
(AH-13). Their susceptibility to ascending concentrations of tested antibiotics indicated that they were all susceptible at a concentration above 50 ppm. Results of the greenhouse experiment regarding the effect of hospital WWTP effluent reuse on zucchini plant fresh weights compared to that irrigated with fresh water indicated that the former recorded a limited increase in total fresh weights (6.2 g and 5.3 g/plant, respectively). Our results demonstrated the low impact of the reuse of Hospital WWTP effluent in agriculture irrigation compared to its greater risk in transferring multiple antibiotic bacteria and antibiotic resistance genes to soil bacteria through natural transformation. |
---|---|
ISSN: | 1664-302X 1664-302X |
DOI: | 10.3389/fmicb.2023.1141383 |