Prospecting bacterial volatile organic compounds antifungal activities against postharvest diseases

Chemical pesticides have a plenty of negative impacts on human health and on the environment. Thus, modern agriculture cropping systems are moving towards more eco-friendly alternatives. This study aims to investigate the bioprotective effect of three volatile organic compounds (VOCs: N-Ethylaniline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of oasis agriculture and sustainable development (Online) 2022-09, Vol.4 (3)
Hauptverfasser: Manel Chaouachi, Takwa Marzouk, Jihed Aouini, Amani Ben Alaya, Bilel Khiari, Naceur Djébali
Format: Artikel
Sprache:ara
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical pesticides have a plenty of negative impacts on human health and on the environment. Thus, modern agriculture cropping systems are moving towards more eco-friendly alternatives. This study aims to investigate the bioprotective effect of three volatile organic compounds (VOCs: N-Ethylaniline, 2-Heptanone and 3-Methylbutan-1-ol) produced by endophytic bacteria against 21 phytopathogenic fungal strains and their bioprotective effect on horticulture products i.e. tomato and lemon fruits and Potato tubers. The results showed that N-Ethylaniline and 3-methylbutan-1-ol had better antagonistic activity against the fungal strains by inhibiting the mycelia growth of the studied fungal strains at different concentrations. The N-Ethylaniline showed the lowest effective concentration (EC50) against B. cinerea strain S5 (0,258 mL/L headspace), Fusarium solani strain SB4.15.1 (0,496 mL/L headspace) and Colletotrichum gloeosporioides strain ManS3Fr02 (0,206 mL/L headspace). At EC50 this compound significantly reduced B. cinerea and C. gloeosporioides infections on tomato and lemon fruits, respectively. However, N-Ethylaniline didn’t showed significant effect on F. solani infection on Potato tubers. This study showed the broad spectrum of in vitro antifungal activity of N-Ethylaniline and its effect to reduce postharvest infections of some fungal diseases suggesting its potential use as a biofumigant.
ISSN:2724-699X
2724-7007