Orbit Rendezvous Maneuvers in Cislunar Space via Nonlinear Hybrid Predictive Control
The NASA’s Artemis project intends to bring humans back to the Moon in the next decade. A key element of the project will be the Lunar Gateway, a space station placed in a peculiar, near rectilinear Halo orbit in the vicinity of a collinear libration point in the Earth–Moon system. This study focuse...
Gespeichert in:
Veröffentlicht in: | Dynamics 2024-09, Vol.4 (3), p.609-642 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The NASA’s Artemis project intends to bring humans back to the Moon in the next decade. A key element of the project will be the Lunar Gateway, a space station placed in a peculiar, near rectilinear Halo orbit in the vicinity of a collinear libration point in the Earth–Moon system. This study focuses on the high-fidelity description of the relative orbit dynamics of a chaser spacecraft with respect to the Gateway, as well as on the design of a proper orbit control strategy for rendezvous maneuvers. A novel formulation of the Battin–Giorgi approach is introduced, in which the reference orbit is that traveled by the Gateway, i.e., it is a highly non-Keplerian, perturbed orbit. The modified Battin–Giorgi approach allows for the description of a relative orbit motion with no restrictive assumption, while including all the relevant orbit perturbations on both the chaser and the Gateway. Moreover, nonlinear hybrid predictive control is introduced as a feedback guidance strategy. This new technique is shown to outperform the classical, well-established feedback linearization in terms of success rate and accuracy on the final conditions. Moreover, a Monte Carlo analysis confirms that hybrid predictive control is also effective in the presence of the temporary unavailability of propulsion or thrust misalignment. |
---|---|
ISSN: | 2673-8716 2673-8716 |
DOI: | 10.3390/dynamics4030032 |