Thermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitro

Cultured neuronal networks with a controlled structure have been widely studied as an in vitro model system to investigate the relationship between network structure and function. However, most cell culture techniques lack the ability to control network structures during cell cultivation, making it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-12, Vol.11 (1), p.6313-12, Article 6313
Hauptverfasser: Hong, Nari, Nam, Yoonkey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cultured neuronal networks with a controlled structure have been widely studied as an in vitro model system to investigate the relationship between network structure and function. However, most cell culture techniques lack the ability to control network structures during cell cultivation, making it difficult to assess functional changes induced by specific structural changes. In this study, we present an in situ manipulation platform based on gold-nanorod-mediated thermoplasmonics to interrogate an in vitro network model. We find that it is possible to induce new neurite outgrowths, eliminate interconnecting neurites, and estimate functional relationships in matured neuronal networks. This method is expected to be useful for studying functional dynamics of neural networks under controlled structural changes. Cultured neuron networks provide insight into network structure and function, but the ability to control network topology is a challenge. Here the authors develop a nanorod-mediated thermoplasmonics platform that enables the formation of new connections, the abolishment of existing connections, and the modulation of network activity during cultivation.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20060-z