Where Does Auto-Segmentation for Brain Metastases Radiosurgery Stand Today?

Detection and segmentation of brain metastases (BMs) play a pivotal role in diagnosis, treatment planning, and follow-up evaluations for effective BM management. Given the rising prevalence of BM cases and its predominantly multiple onsets, automated segmentation is becoming necessary in stereotacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineering (Basel) 2024-05, Vol.11 (5), p.454
Hauptverfasser: Kim, Matthew, Wang, Jen-Yeu, Lu, Weiguo, Jiang, Hao, Stojadinovic, Strahinja, Wardak, Zabi, Dan, Tu, Timmerman, Robert, Wang, Lei, Chuang, Cynthia, Szalkowski, Gregory, Liu, Lianli, Pollom, Erqi, Rahimy, Elham, Soltys, Scott, Chen, Mingli, Gu, Xuejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detection and segmentation of brain metastases (BMs) play a pivotal role in diagnosis, treatment planning, and follow-up evaluations for effective BM management. Given the rising prevalence of BM cases and its predominantly multiple onsets, automated segmentation is becoming necessary in stereotactic radiosurgery. It not only alleviates the clinician's manual workload and improves clinical workflow efficiency but also ensures treatment safety, ultimately improving patient care. Recent strides in machine learning, particularly in deep learning (DL), have revolutionized medical image segmentation, achieving state-of-the-art results. This review aims to analyze auto-segmentation strategies, characterize the utilized data, and assess the performance of cutting-edge BM segmentation methodologies. Additionally, we delve into the challenges confronting BM segmentation and share insights gleaned from our algorithmic and clinical implementation experiences.
ISSN:2306-5354
2306-5354
DOI:10.3390/bioengineering11050454