Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4

Magnetic topological semimetals allow for an effective control of the topological electronic states by tuning the spin configuration. Among them, Weyl nodal line semimetals are thought to have the greatest tunability, yet they are the least studied experimentally due to the scarcity of material cand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-09, Vol.14 (1), p.5812-5812, Article 5812
Hauptverfasser: Lei, Shiming, Allen, Kevin, Huang, Jianwei, Moya, Jaime M., Wu, Tsz Chun, Casas, Brian, Zhang, Yichen, Oh, Ji Seop, Hashimoto, Makoto, Lu, Donghui, Denlinger, Jonathan, Jozwiak, Chris, Bostwick, Aaron, Rotenberg, Eli, Balicas, Luis, Birgeneau, Robert, Foster, Matthew S., Yi, Ming, Sun, Yan, Morosan, Emilia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic topological semimetals allow for an effective control of the topological electronic states by tuning the spin configuration. Among them, Weyl nodal line semimetals are thought to have the greatest tunability, yet they are the least studied experimentally due to the scarcity of material candidates. Here, using a combination of angle-resolved photoemission spectroscopy and quantum oscillation measurements, together with density functional theory calculations, we identify the square-net compound EuGa 4 as a magnetic Weyl nodal ring semimetal, in which the line nodes form closed rings near the Fermi level. The Weyl nodal ring states show distinct Landau quantization with clear spin splitting upon application of a magnetic field. At 2 K in a field of 14 T, the transverse magnetoresistance of EuGa 4 exceeds 200,000%, which is more than two orders of magnitude larger than that of other known magnetic topological semimetals. Our theoretical model suggests that the non-saturating magnetoresistance up to 40 T arises as a consequence of the nodal ring state. The tunability of electronic properties is a central goal of research into topological semimetals. Here, the authors report Weyl nodal ring states in the magnetic semimetal EuGa 4 and link the nodal ring state to the observed large non-saturating magnetoresistance.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-40767-z