Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset

SMD (Singapore Maritime Dataset) is a public dataset with annotated videos, and it is almost unique in the training of deep neural networks (DNN) for the recognition of maritime objects. However, there are noisy labels and imprecisely located bounding boxes in the ground truth of the SMD. In this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and engineering 2022-03, Vol.10 (3), p.377
Hauptverfasser: Kim, Jun-Hwa, Kim, Namho, Park, Yong Woon, Won, Chee Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SMD (Singapore Maritime Dataset) is a public dataset with annotated videos, and it is almost unique in the training of deep neural networks (DNN) for the recognition of maritime objects. However, there are noisy labels and imprecisely located bounding boxes in the ground truth of the SMD. In this paper, for the benchmark of DNN algorithms, we correct the annotations of the SMD dataset and present an improved version, which we coined SMD-Plus. We also propose augmentation techniques designed especially for the SMD-Plus. More specifically, an online transformation of training images via Copy & Paste is applied to solve the class-imbalance problem in the training dataset. Furthermore, the mix-up technique is adopted in addition to the basic augmentation techniques for YOLO-V5. Experimental results show that the detection and classification performance of the modified YOLO-V5 with the SMD-Plus has improved in comparison to the original YOLO-V5. The ground truth of the SMD-Plus and our experimental results are available for download.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse10030377