Deep learning to estimate response of concurrent chemoradiotherapy in non-small-cell lung carcinoma
Concurrent chemoradiotherapy (CCRT) is a crucial treatment for non-small cell lung carcinoma (NSCLC). However, the use of deep learning (DL) models for predicting the response to CCRT in NSCLC remains unexplored. Therefore, we constructed a DL model for estimating the response to CCRT in NSCLC and e...
Gespeichert in:
Veröffentlicht in: | Journal of translational medicine 2024-10, Vol.22 (1), p.896-12, Article 896 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Concurrent chemoradiotherapy (CCRT) is a crucial treatment for non-small cell lung carcinoma (NSCLC). However, the use of deep learning (DL) models for predicting the response to CCRT in NSCLC remains unexplored. Therefore, we constructed a DL model for estimating the response to CCRT in NSCLC and explored the associated biological signaling pathways.
Overall, 229 patients with NSCLC were recruited from six hospitals. Based on contrast-enhanced computed tomography (CT) images, a three-dimensional ResNet50 algorithm was used to develop a model and validate the performance in predicting response and prognosis. An associated analysis was conducted on CT image visualization, RNA sequencing, and single-cell sequencing.
The DL model exhibited favorable predictive performance, with an area under the curve of 0.86 (95% confidence interval [CI] 0.79-0·92) in the training cohort and 0.84 (95% CI 0.75-0.94) in the validation cohort. The DL model (low score vs. high score) was an independent predictive factor; it was significantly associated with progression-free survival and overall survival in both the training (hazard ratio [HR] = 0.54 [0.36-0.80], P = 0.002; 0.44 [0.28-0.68], P |
---|---|
ISSN: | 1479-5876 1479-5876 |
DOI: | 10.1186/s12967-024-05708-4 |