Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices

Supramolecular chemistry offers an exciting opportunity to assemble materials with molecular precision. However, there remains an unmet need to turn molecular self-assembly into functional materials and devices. Harnessing the inherent properties of both disordered proteins and graphene oxide (GO),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-03, Vol.11 (1), p.1182-1182, Article 1182
Hauptverfasser: Wu, Yuanhao, Okesola, Babatunde O., Xu, Jing, Korotkin, Ivan, Berardo, Alice, Corridori, Ilaria, di Brocchetti, Francesco Luigi Pellerej, Kanczler, Janos, Feng, Jingyu, Li, Weiqi, Shi, Yejiao, Farafonov, Vladimir, Wang, Yiqiang, Thompson, Rebecca F., Titirici, Maria-Magdalena, Nerukh, Dmitry, Karabasov, Sergey, Oreffo, Richard O. C., Carlos Rodriguez-Cabello, Jose, Vozzi, Giovanni, Azevedo, Helena S., Pugno, Nicola M., Wang, Wen, Mata, Alvaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supramolecular chemistry offers an exciting opportunity to assemble materials with molecular precision. However, there remains an unmet need to turn molecular self-assembly into functional materials and devices. Harnessing the inherent properties of both disordered proteins and graphene oxide (GO), we report a disordered protein-GO co-assembling system that through a diffusion-reaction process and disorder-to-order transitions generates hierarchically organized materials that exhibit high stability and access to non-equilibrium on demand. We use experimental approaches and molecular dynamics simulations to describe the underlying molecular mechanism of formation and establish key rules for its design and regulation. Through rapid prototyping techniques, we demonstrate the system’s capacity to be controlled with spatio-temporal precision into well-defined capillary-like fluidic microstructures with a high level of biocompatibility and, importantly, the capacity to withstand flow. Our study presents an innovative approach to transform rational supramolecular design into functional engineering with potential widespread use in microfluidic systems and organ-on-a-chip platforms. Self-organising systems have huge potential in device design and fabrication; however, demonstrations of this are limited. Here, the authors report on a combination of disordered proteins and graphene oxide which allows spatio-temporal patterning and demonstrate the fabrication of microfluidic devices.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-14716-z