Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process

To understand the impact of epigenetics on human misfolding disease, we apply Gaussian-process regression (GPR) based machine learning (ML) (GPR-ML) through variation spatial profiling (VSP). VSP generates population-based matrices describing the spatial covariance (SCV) relationships that link gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-11, Vol.10 (1), p.5052-15, Article 5052
Hauptverfasser: Wang, Chao, Scott, Samantha M., Subramanian, Kanagaraj, Loguercio, Salvatore, Zhao, Pei, Hutt, Darren M., Farhat, Nicole Y., Porter, Forbes D., Balch, William E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To understand the impact of epigenetics on human misfolding disease, we apply Gaussian-process regression (GPR) based machine learning (ML) (GPR-ML) through variation spatial profiling (VSP). VSP generates population-based matrices describing the spatial covariance (SCV) relationships that link genetic diversity to fitness of the individual in response to histone deacetylases inhibitors (HDACi). Niemann-Pick C1 (NPC1) is a Mendelian disorder caused by >300 variants in the NPC1 gene that disrupt cholesterol homeostasis leading to the rapid onset and progression of neurodegenerative disease. We determine the sequence-to-function-to-structure relationships of the NPC1 polypeptide fold required for membrane trafficking and generation of a tunnel that mediates cholesterol flux in late endosomal/lysosomal (LE/Ly) compartments. HDACi treatment reveals unanticipated epigenomic plasticity in SCV relationships that restore NPC1 functionality. GPR-ML based matrices capture the epigenetic processes impacting information flow through central dogma, providing a framework for quantifying the effect of the environment on the healthspan of the individual. How epigenetics coordinate with genetics to impact protein fitness is unknown. Here, using a Variation Spatial Profiling strategy and machine learning, the authors map HDAC impact on a full set of Niemann pick C1 disease variants to quantitate an unanticipated plasticity in central dogma.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12969-x