Asymptotic Form of the Covariance Matrix of Likelihood-Based Estimator in Multidimensional Linear System Model for the Case of Infinity Number of Nuisance Parameters

This article is devoted to the synthesis and analysis of the quality of the statistical estimate of parameters of a multidimensional linear system (MLS) with one input and m outputs. A nontrivial case is investigated when the one-dimensional input signal of MLS is a deterministic process, the values...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-02, Vol.12 (3), p.473
1. Verfasser: Varypaev, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article is devoted to the synthesis and analysis of the quality of the statistical estimate of parameters of a multidimensional linear system (MLS) with one input and m outputs. A nontrivial case is investigated when the one-dimensional input signal of MLS is a deterministic process, the values of which are unknown nuisance parameters. The estimate is based only on observations of MLS output signals distorted by random Gaussian stationary m-dimensional noise with a known spectrum. It is assumed that the likelihood function of observations of the output signals of MLS satisfies the conditions of local asymptotic normality. The n-consistency of the estimate is established. Under the assumption of asymptotic normality of an objective function, the limiting covariance matrix of the estimate is calculated for case where the number of observations tends to infinity.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12030473