Functionalization of a Triazine Dendrimer Presenting Four Maleimides on the Periphery and a DOTA Group at the Core

A readily and rapidly accessible triazine dendrimer was manipulated in four steps with 23% overall yield to give a construct displaying four maleimide groups and DOTA. The maleimide groups of the dendrimer are sensitive to hydrolysis under basic conditions. The addition of up to four molecules of wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2016-03, Vol.21 (3), p.335-335
Hauptverfasser: Lee, Changsuk, Ji, Kun, Simanek, Eric E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A readily and rapidly accessible triazine dendrimer was manipulated in four steps with 23% overall yield to give a construct displaying four maleimide groups and DOTA. The maleimide groups of the dendrimer are sensitive to hydrolysis under basic conditions. The addition of up to four molecules of water can be observed via mass spectrometry and HPLC. The evolution in the alkene region of the ¹H-NMR--the transformation of the maleimide singlet to the appearance of two doublets--is consistent with imide hydrolysis and not the Michael addition. The hydrolysis events that proceeded over hours are sufficiently slower than the desired thiol addition reactions that occur in minutes. The addition of thiols to maleimides can be accomplished in a variety of solvents. The thiols examined derived from cysteine and include the protected amino acid, a protected dipeptide, and native oligopeptides containing either 9 or 18 amino acids. The addition reactions were monitored with HPLC and mass spectrometry in most cases. Complete substitution was observed for small molecule reactants. The model peptides containing nine or eighteen amino acids provided a mixture of products averaging between 3 and 4 substitutions/dendrimer. The functionalization of the chelate group with gadolinium was also accomplished easily.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules21030335