Semantic 3D Reconstruction for Robotic Manipulators with an Eye-In-Hand Vision System
Three-dimensional reconstruction and semantic understandings have attracted extensive attention in recent years. However, current reconstruction techniques mainly target large-scale scenes, such as an indoor environment or automatic self-driving cars. There are few studies on small-scale and high-pr...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-02, Vol.10 (3), p.1183 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional reconstruction and semantic understandings have attracted extensive attention in recent years. However, current reconstruction techniques mainly target large-scale scenes, such as an indoor environment or automatic self-driving cars. There are few studies on small-scale and high-precision scene reconstruction for manipulator operation, which plays an essential role in the decision-making and intelligent control system. In this paper, a group of images captured from an eye-in-hand vision system carried on a robotic manipulator are segmented by deep learning and geometric features and create a semantic 3D reconstruction using a map stitching method. The results demonstrate that the quality of segmented images and the precision of semantic 3D reconstruction are effectively improved by our method. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10031183 |