Jet Single Shot Detection

We apply object detection techniques based on Convolutional Neural Networks to jet reconstruction and identification at the CERN Large Hadron Collider. In particular, we focus on CaloJet reconstruction, representing each event as an image composed of calorimeter cells and using a Single Shot Detecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2021, Vol.251, p.4027
Hauptverfasser: Pol, Adrian Alan, Aarrestad, Thea, Govorkova, Katya, Halily, Roi, Kopetz, Tal, Klempner, Anat, Loncar, Vladimir, Ngadiuba, Jennifer, Pierini, Maurizio, Sirkin, Olya, Summers, Sioni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply object detection techniques based on Convolutional Neural Networks to jet reconstruction and identification at the CERN Large Hadron Collider. In particular, we focus on CaloJet reconstruction, representing each event as an image composed of calorimeter cells and using a Single Shot Detection network, called Jet-SSD. The model performs simultaneous localization and classification and additional regression tasks to measure jet features. We investigate TernaryWeight Networks with weights constrained to {-1, 0, 1} times a layer- and channel-dependent scaling factors. We show that the quantized version of the network closely matches the performance of its full-precision equivalent.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/202125104027