Antibiotic-Powered Energy Harvesting: Introducing Benzylpenicillin as an Efficient Tribopositive Material for Triboelectric Nanogenerators
The pursuit of enhancing the performance of triboelectric nanogenerators (TENGs) has led to the exploration of new materials with efficient charge-generating capabilities. Herein, we propose benzylpenicillin sodium salt (b-PEN) as a candidate biomaterial for the tribopositive layer owing to its supe...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-11, Vol.13 (23), p.2995 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pursuit of enhancing the performance of triboelectric nanogenerators (TENGs) has led to the exploration of new materials with efficient charge-generating capabilities. Herein, we propose benzylpenicillin sodium salt (b-PEN) as a candidate biomaterial for the tribopositive layer owing to its superior electron-donating capability via the lone pairs of electrons on its sulfur atom, carbonyl, and amino functional groups. The proposed b-PEN TENG device exhibits promising electrical performance with an open-circuit voltage of 185 V, a short-circuit current of 4.52 µA, and a maximum power density of 72 µW/cm
under force applied by a pneumatic air cylinder at 5 Hz. The biomechanical energy-harvesting capabilities of the b-PEN TENG device are demonstrated by actuating it with finger, hand, and foot movements. Moreover, the proposed TENG device is utilized to charge capacitors and power light-emitting diodes by scavenging the externally applied mechanical energy. This outstanding electrical performance makes b-PEN a promising tribopositive material. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano13232995 |