Atomic Dispersion via High‐Entropy Liquid Metal Alloys
Gallium‐based liquid metal alloys exhibit unconventional and intriguing properties as metallic solvents, demonstrating an exceptional potential to dissolve and reconfigure a vast array of elements within the liquid metal matrix. Leveraging on these distinctive characteristics of gallium‐based alloys...
Gespeichert in:
Veröffentlicht in: | Small structures 2024-12, Vol.5 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gallium‐based liquid metal alloys exhibit unconventional and intriguing properties as metallic solvents, demonstrating an exceptional potential to dissolve and reconfigure a vast array of elements within the liquid metal matrix. Leveraging on these distinctive characteristics of gallium‐based alloys, the synthesis of high‐entropy liquid metal alloys (HELMAs) in low dimensions is reported. The nanoscale HELMAs offer advantages including the solvation of multiple metallic elements at room temperature, while promoting their atomic dispersion at elevated concentrations. Entropy estimations for HELMAs surpass those of high‐temperature molten metals, leading to the realization of high‐entropy liquid metal systems at room temperature. Through a proof‐of‐concept hydrogen evolution reaction comparison, the potential of these HELMAs in enhancing the activities of nanocatalysts is demonstrated. In this case, atomic dispersion of Pt is shown in senary GaIn‐AuCuPtPd HELMA, contrasting with lower entropy systems in which Pt forms discernible clusters. These presented features can lead to catalytic systems with enhanced and tailored activities.
Gallium‐based liquid metal alloys are explored as metallic solvents for synthesizing nanoscale high‐entropy liquid metal alloys (HELMAs). These HELMAs demonstrate unique capability to dissolve and disperse multiple metallic elements at room temperature. Their high‐entropy surpasses traditional high‐temperature molten metals, offering potential reactivity enhancements. Herein, the vast compositional potential of HELMAs is initiated, enabling reactive high‐entropy liquid metal systems. |
---|---|
ISSN: | 2688-4062 2688-4062 |
DOI: | 10.1002/sstr.202400294 |