A proof-of-concept study on CGRP plasma levels of migraineurs during a 6-month treatment with ERENUMAB

The introduction of monoclonal antibodies (mAbs) against calcitonin-gene related peptide (CGRP) or CGRP receptors in the treatment of migraine raised concerns on the possible risks associated to the long-term inhibition of CGRP physiological functions. In this proof-of-concept study, we have measure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of headache and pain 2020-10, Vol.21 (1), p.124-124, Article 124
Hauptverfasser: Tringali, Giuseppe, Vollono, Catello, Calabresi, Paolo, Navarra, Pierluigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The introduction of monoclonal antibodies (mAbs) against calcitonin-gene related peptide (CGRP) or CGRP receptors in the treatment of migraine raised concerns on the possible risks associated to the long-term inhibition of CGRP physiological functions. In this proof-of-concept study, we have measured the circulating levels of CGRP in 7 patients with high-frequency episodic migraine receiving the anti-CGRP receptor mAb erenumab for at least 6 months, to test the hypothesis that long-term blockade of CGRP receptors induces an increase in systemic CGRP levels via a classical up-regulation mechanism. Plasma CGRP levels were measured by a validated radioimmunoassay at baseline, and after 1 and 6 months of treatment with erenumab, 70 mg given sc every 4 weeks. We found (data expressed as the means ± SD): 38.34 ± 30.74 pg CGRP/ml of plasma at baseline, 38.19 ± 29.23 pg/ml after 1 month and 53.89 ± 28.03 pg/ml after 6 months of treatment. Thus, the average increase in plasma CGRP levels after 6 months of treatment was about + 40% compared to both baseline and 1-month treatments; such difference was not statistically significant because of high SD values in all groups. These preliminary findings need to be confirmed in larger, sufficiently powered experiments.
ISSN:1129-2369
1129-2377
DOI:10.1186/s10194-020-01193-4