Biomechanical Changes in the Ankle Joint after Syndesmosis and Deltoid Injury and Subsequent Repair in a Cadaveric Model

Category: Ankle; Trauma Introduction/Purpose: Recent studies have stressed the important role of the deltoid ligament in maintaining global ankle stability. However, controversy remains around whether deltoid ligament repair is necessary in addition to syndesmotic repair when addressing injuries to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foot & ankle orthopaedics 2022-11, Vol.7 (4)
Hauptverfasser: Lundy, Alexander, Colantonio, Donald, Le, Anthony, Lee, Richard C., Piscoya, Andres S., Holm, Erik, Eckel, Tobin T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Category: Ankle; Trauma Introduction/Purpose: Recent studies have stressed the important role of the deltoid ligament in maintaining global ankle stability. However, controversy remains around whether deltoid ligament repair is necessary in addition to syndesmotic repair when addressing injuries to both. The purpose of this study was to measure differences in tibiotalar joint contact pressures and tibiotalar contact area in the presence of deltoid ligament injury, syndesmotic injury, and after their respective repairs using a cadaveric model. Our hypotheses were 1) injury to the syndesmosis and deltoid would increase contact pressures and decrease contact area, 2) repaired injuries would restore biomechanics to near native state, and 3) that there would be similar tibiotalar contact pressures and contact area with syndesmosis repair alone compared to syndesmosis and deltoid ligament repair. Methods: Twelve human cadaveric lower extremities were randomized and tested under a series of conditions: 1) native, 2) sectioning of syndesmosis or deltoid, 3) sectioning of both the syndesmosis and deltoid, 4) repair of syndesmosis or deltoid, 5) repair of both. In one group, the syndesmosis was sectioned and repaired first and in the other the deltoid was sectioned and repaired first. The syndesmosis was repaired with a single high-tensile strength suture mechanism and deltoid ligament repairs were performed with a single suture anchor. Specimens were tested under each condition with an axial compressive and torsional load. Contact pressures and area within the ankle were measured with a digitized pressure sensor (Tekscan, Boston MA). Changes in contact pressure and area were compared with two-way repeated measure analysis of variance and significant findings were tested with post-hoc pairwise comparisons of estimated marginal means with Bonferroni-adjusted p-values for multiple comparisons (α = 0.05). Results: The highest mean contact pressure was seen when the deltoid was injured, but the syndesmosis was still intact (4.43 +/- 1.328 mPa) compared to mean contact pressure of 3.142 +/-0.511 mPa in the native condition. The lowest mean contact pressure was seen when the deltoid was repaired, but the syndesmosis was still disrupted (3.068 +/- 0.477). However, these differences in mean contact pressures did not differ significantly with pairwise comparison. Total contact area was significantly less following syndesmosis repair in isolation when compared to the native c
ISSN:2473-0114
2473-0114
DOI:10.1177/2473011421S00760