A Signature-Based Data Security Technique for Energy-Efficient Data Aggregation in Wireless Sensor Networks

Data aggregation techniques have been widely used in wireless sensor networks (WSNs) to solve the energy constraint problems of sensor nodes. They can conserve the significant amount of energy by reducing data packet transmission costs. However, many data aggregation applications require privacy and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of distributed sensor networks 2014-01, Vol.10 (1), p.272537
Hauptverfasser: Yoon, Min, Jang, Miyoung, Kim, Hyeong-Il, Chang, Jae-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data aggregation techniques have been widely used in wireless sensor networks (WSNs) to solve the energy constraint problems of sensor nodes. They can conserve the significant amount of energy by reducing data packet transmission costs. However, many data aggregation applications require privacy and integrity protection of the real data while transmitting data from the sensing nodes to a sink node. The existing schemes for supporting both privacy and integrity, that is, iCDPA, and iPDA, suffer from high communication cost, high computation cost, and data propagation delay. To resolve the problems, we propose a signature-based data security technique for protecting sensitive data aggregation in WSNs. To support privacy-preserving data aggregation and integrity checking, our technique makes use of the additive property of complex numbers. Out of two parts of a complex number, the real part is used to hide the sampled data of a sensor node from its neighboring nodes and adversaries, whereas the imaginary part is used for data integrity checking at both data aggregators and the sink node. Through a performance analysis, we prove that our privacy-preserving data aggregation scheme outperforms the existing schemes up to 50% in terms of communication and computation overheads as well as up to 3 times in terms of integrity checking and data propagation delay.
ISSN:1550-1477
1550-1329
1550-1477
DOI:10.1155/2014/272537