Regional Distribution and Causes of Global Mine Tailings Dam Failures

Tailings ponds are one of the three major production facilities in metal mines. The volume of tailings increases year by year, but the storage capacity of existing tailings ponds is limited. Therefore, tailings dams must become more fine-grained and larger. The potential hazard they represent should...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2022-06, Vol.12 (6), p.905
Hauptverfasser: Lin, Shui-Quan, Wang, Guang-Jin, Liu, Wen-Lian, Zhao, Bing, Shen, Ying-Ming, Wang, Meng-Lai, Li, Xiao-Shuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tailings ponds are one of the three major production facilities in metal mines. The volume of tailings increases year by year, but the storage capacity of existing tailings ponds is limited. Therefore, tailings dams must become more fine-grained and larger. The potential hazard they represent should not be underestimated. This paper reveals the causes and regional distribution patterns of 342 tailings dam failures globally from 1915 to 2021 through statistical analysis. It was found that tailings pond failures occur almost every year, with an average of 4.4 accidents/year (1947–2021). The frequency has been gradually increasing in recent years, and most tailings pond failures are directly related to heavy rainfall or earthquakes. The frequency of tailings pond failures was significantly higher in Asia (21.3%) and the Americas (57.9%), especially in China (n = 43) and the United States (n = 107). Causes of tailings pond failures differed among regions. Most tailings pond failures in Asia and Europe were related to hydroclimate, while those in South America were mainly triggered by earthquakes. This study will provide theoretical data for the pre-design as well as the safe and stable operation of global tailings ponds, which will help to prevent global tailings pond failures.
ISSN:2075-4701
2075-4701
DOI:10.3390/met12060905