Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications

Because of the variety and complexity of solid-state phase transformation characteristics of titanium alloys, the relationship between their microstructure and performance has always been one of the hot topics in the field of titanium alloy materials science. By adjusting the composition, processing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hang kong cai liao xue bao 2020-06, Vol.40 (3), p.1-10
Hauptverfasser: Zhu, Zhishou, Shang, Guoqiang, Wang, Xinnan, Zhu, Liwei, Li, Jing, Li, Mingbing, Xin, Yunpeng, Liu, Gechen
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because of the variety and complexity of solid-state phase transformation characteristics of titanium alloys, the relationship between their microstructure and performance has always been one of the hot topics in the field of titanium alloy materials science. By adjusting the composition, processing technology and heat treatment process parameters of titanium alloys, the microstructure type and parameters of titanium alloy parts can be adjusted to a certain extent to achieve the best matches in strength, plasticity, toughness, fatigue and fatigue crack propagation rate, etc. In this paper, based on the comparison of four typical microstructure characteristics including equiaxed microstructure, bimodal microstructure, lamellar microstructure, basket weave microstructure and their thermo-mechanical controlling technologies, taking the TC21 titanium alloy, TC4-DT titanium alloy, TC32 titanium alloy and TB17 titanium alloy for aviation use as examples to review the properties of strength, plasticity, fracture tou
ISSN:1005-5053
1005-5053
DOI:10.11868/j.issn.1005-5053.2020.000086