Axis Orbit Recognition of the Hydropower Unit Based on Feature Combination and Feature Selection

Axis-orbit recognition is an essential means for the fault diagnosis of hydropower units. An axis-orbit recognition method based on feature combination and feature selection is proposed, aiming to solve the problems of the low recognition accuracy, poor robustness, and low efficiency of existing axi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-03, Vol.23 (6), p.2895
Hauptverfasser: Liu, Wushuang, Zheng, Yang, Zhou, Xuan, Chen, Qijuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Axis-orbit recognition is an essential means for the fault diagnosis of hydropower units. An axis-orbit recognition method based on feature combination and feature selection is proposed, aiming to solve the problems of the low recognition accuracy, poor robustness, and low efficiency of existing axis-orbit recognition methods. First, various contour, moment, and geometric features of axis orbit samples are extracted from the original data and combined into a multidimensional feature set; then, Random Forest (RF)-Fisher feature selection is applied to realize feature dimensionality reduction; and finally, the selected features are set as the input of the support vector machine (SVM), which is optimized by the gravitational search algorithm (GSA) for axis-orbit recognition. The analytical results show that the proposed method has high recognition efficiency and good robustness while maintaining high accuracy for axis-orbit recognition.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23062895