Resonant Anisotropic (p,q)-Equations

We consider an anisotropic Dirichlet problem which is driven by the (p(z),q(z))-Laplacian (that is, the sum of a p(z)-Laplacian and a q(z)-Laplacian), The reaction (source) term, is a Carathéodory function which asymptotically as x±∞ can be resonant with respect to the principal eigenvalue of (−Δp(z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-08, Vol.8 (8), p.1332
Hauptverfasser: Gasiński, Leszek, Papageorgiou, Nikolaos S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an anisotropic Dirichlet problem which is driven by the (p(z),q(z))-Laplacian (that is, the sum of a p(z)-Laplacian and a q(z)-Laplacian), The reaction (source) term, is a Carathéodory function which asymptotically as x±∞ can be resonant with respect to the principal eigenvalue of (−Δp(z),W01,p(z)(Ω)). First using truncation techniques and the direct method of the calculus of variations, we produce two smooth solutions of constant sign. In fact we show that there exist a smallest positive solution and a biggest negative solution. Then by combining variational tools, with suitable truncation techniques and the theory of critical groups, we show the existence of a nodal (sign changing) solution, located between the two extremal ones.
ISSN:2227-7390
2227-7390
DOI:10.3390/math8081332