Carbon nanotubes-based nanohybrids for multifunctional nanocomposites
In the present work, nano-hybrids based on carbon nanotubes (CNTs) bearing immobilized, either through covalent linkage and physical absorption, commercial anti-oxidant molecules have been formulated and used as nanofillers in Ultra High Molecular Weight Polyethylene (UHMWPE), aiming at preparing mu...
Gespeichert in:
Veröffentlicht in: | Journal of King Saud University. Science 2017-10, Vol.29 (4), p.502-509 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, nano-hybrids based on carbon nanotubes (CNTs) bearing immobilized, either through covalent linkage and physical absorption, commercial anti-oxidant molecules have been formulated and used as nanofillers in Ultra High Molecular Weight Polyethylene (UHMWPE), aiming at preparing multifunctional nanocomposites. The effective immobilization of the anti-oxidant molecules has been probed by spectroscopic and thermogravimetric analyses. The study of the morphology and the rheological behaviour of the nanocomposites show that the immobilization of anti-oxidant molecules onto the CNTs surface is beneficial for the state of the polymer/nanoparticles interfacial region. Additionally, the study of the nanocomposites thermo-oxidative behaviour reveals that the nano-hybrids are able to exert a remarkable anti-oxidant action which is related to the strong interactions established between the anti-oxidant molecules and the CNTs, resulting in the formation of structural defects onto the CNTs surface and in the consequent amplification of the intrinsic CNTs radical scavenging activity. |
---|---|
ISSN: | 1018-3647 |
DOI: | 10.1016/j.jksus.2017.09.007 |