Ekeland-type variational principle with applications to nonconvex minimization and equilibrium problems
The aim of the present paper is to establish a variational principle in metric spaces without assumption of completeness when the involved function is not lower semicontinuous. As consequences, we derive many fixed point results, nonconvex minimization theorem, a nonconvex minimax theorem, a nonconv...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis (Vilnius, Lithuania) Lithuania), 2019-01, Vol.24 (3), p.407-432 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of the present paper is to establish a variational principle in metric spaces without assumption of completeness when the involved function is not lower semicontinuous. As consequences, we derive many fixed point results, nonconvex minimization theorem, a nonconvex minimax theorem, a nonconvex equilibrium theorem in noncomplete metric spaces. Examples are also given to illustrate and to show that obtained results are proper generalizations. |
---|---|
ISSN: | 1392-5113 2335-8963 |
DOI: | 10.15388/NA.2019.3.6 |