Lighting-environment-adjustable block-type 3D indoor PV for wireless sensor communication

Demand is increasing for photovoltaics (PVs) as a result of the development of the Internet of Things and edge computing technologies. As the lighting environment is different for the applications, thus, PVs must be adjustable to various light environments in which systems are installed. PVs should...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-10, Vol.13 (1), p.17846-17846, Article 17846
Hauptverfasser: Sim, Yeon Hyang, Hwang, Jung-Hyun, Yun, Min Ju, Lee, Kyoungho, Lee, Dong Yoon, Cha, Seung I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Demand is increasing for photovoltaics (PVs) as a result of the development of the Internet of Things and edge computing technologies. As the lighting environment is different for the applications, thus, PVs must be adjustable to various light environments in which systems are installed. PVs should therefore be capable of easily changing their morphology without damaging the cells. To address this problem, in this work, a three-dimensional (3D) structure that increases power output under omnidirectional light was applied to a crystalline silicon solar cell array using a block-type method. The resultant block-type 3D indoor PV could operate a Bluetooth low-energy module in conjunction with a power management integrated circuit when the illuminance was 532 lx and 1620 lx and each PV installation area was 129.9cm 2 and 32.48 cm 2 respectively.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-45226-9