Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa

Degenerative retinal disease leads to significant visual morbidity worldwide. Diabetic retinopathy and macular degeneration are leading causes of blindness in the developed world. While current therapies for these diseases slow disease progression, stem cell and gene therapy may also reverse the eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Retina and Vitreous 2019-02, Vol.5 (1), p.7-7, Article 7
Hauptverfasser: Ludwig, Parker E, Freeman, S Caleb, Janot, Adam C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Degenerative retinal disease leads to significant visual morbidity worldwide. Diabetic retinopathy and macular degeneration are leading causes of blindness in the developed world. While current therapies for these diseases slow disease progression, stem cell and gene therapy may also reverse the effects of these, and other, degenerative retinal conditions. Novel therapies being investigated include the use of various types of stem cells in the regeneration of atrophic or damaged retinal tissue, the prolonged administration of neurotrophic factors and/or drug delivery, immunomodulation, as well as the replacement of mutant genes, and immunomodulation through viral vector delivery. This review will update the reader on aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa and other less common inherited retinal dystrophies. These therapies include the use of adeno-associated viral vector-based therapies for treatment of various types of retinitis pigmentosa and dry age-related macular degeneration. Other potential therapies reviewed include the use of mesenchymal stem cells in local immunomodulation, and the use of stem cells in generating structures like three-dimensional retinal sheets for transplantation into degenerative retinas. Finally, aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, and other less common inherited retinal dystrophies will be reviewed.
ISSN:2056-9920
2056-9920
DOI:10.1186/s40942-019-0158-y