Application of Explosive Equivalency Approach in Blast-Induced Seismic Effect Prediction Using EXPLO5 Thermochemical Code

Blasting is a key process that plays a significant role in various industries, including mining and construction. To measure the effectiveness and potential impact of a blast generated by different explosives, industry professionals use a widely accepted parameter known as TNT (trinitrotoluene) equi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-08, Vol.14 (16), p.7408
Hauptverfasser: Stanković, Siniša, Olivani, Josip, Dobrilović, Ivana, Sućeska, Muhamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blasting is a key process that plays a significant role in various industries, including mining and construction. To measure the effectiveness and potential impact of a blast generated by different explosives, industry professionals use a widely accepted parameter known as TNT (trinitrotoluene) equivalent. This manuscript provides an overview of the approach based on the application of the explosive equivalency principle in the prediction of the seismic effects caused by the detonation of different explosives. The explosive equivalents of studied explosives are derived from the results of thermochemical calculations using the EXPLO5 code and compared to field tests. The results have demonstrated that the equivalency approach can potentially be a useful tool in the assessment of blast-induced seismic effects.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14167408