No-Reference Objective Quality Metrics for 3D Point Clouds: A Review

Three-dimensional (3D) applications lead the digital transition toward more immersive and interactive multimedia technologies. Point clouds (PCs) are a fundamental element in capturing and rendering 3D digital environments, but they present significant challenges due to the large amount of data typi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-11, Vol.24 (22), p.7383
Hauptverfasser: Porcu, Simone, Marche, Claudio, Floris, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-dimensional (3D) applications lead the digital transition toward more immersive and interactive multimedia technologies. Point clouds (PCs) are a fundamental element in capturing and rendering 3D digital environments, but they present significant challenges due to the large amount of data typically needed to represent them. Although PC compression techniques can reduce the size of PCs, they introduce degradations that can negatively impact the PC's quality and therefore the object representation's accuracy. This trade-off between data size and PC quality highlights the critical importance of PC quality assessment (PCQA) techniques. In this article, we review the state-of-the-art no-reference (NR) objective quality metrics for PCs, which can accurately estimate the quality of generated and compressed PCs solely based on feature information extracted from the distorted PC. These characteristics make NR PCQA metrics particularly suitable in real-world application scenarios where the original PC data are unavailable for comparison, such as in streaming applications.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24227383