Image denoising with two-dimensional zero attracting LMS algorithm
In this paper, we propose a new two-dimensional (2D) zero-attracting least-mean-square (ZALMS) adaptive filter by imposing a sparsity aware l1-norm penalty term into the cost function of the 2D-LMS algorithm. Comparisons with 2D-LMS and BM3D algorithms were conducted both on sparse and non-sparse im...
Gespeichert in:
Veröffentlicht in: | Mühendislik bilimleri dergisi 2019-01, Vol.25 (5), p.539-545 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a new two-dimensional (2D) zero-attracting least-mean-square (ZALMS) adaptive filter by imposing a sparsity aware l1-norm penalty term into the cost function of the 2D-LMS algorithm. Comparisons with 2D-LMS and BM3D algorithms were conducted both on sparse and non-sparse images. The carried-out simulations show that the proposed algorithm has good capabilities in updating the filter coefficients along both horizontal and vertical directions, and its performance is similar with the 2D-LMS algorithm with lower computation time. But 2D-ZALMS performs better than BM3D algorithm. |
---|---|
ISSN: | 1300-7009 2147-5881 |
DOI: | 10.5505/pajes.2018.06982 |