Energy-Efficient Configuration and Control Allocation for a Dynamically Reconfigurable Underwater Robot
A dynamically reconfigurable underwater robot, which can vary its configuration during a mission, would be useful for confined environment exploration and docking because of its versatility. A mission can be performed by choosing among different configurations, and the energy cost may increase, owin...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2023-06, Vol.23 (12), p.5439 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A dynamically reconfigurable underwater robot, which can vary its configuration during a mission, would be useful for confined environment exploration and docking because of its versatility. A mission can be performed by choosing among different configurations, and the energy cost may increase, owing to the reconfigurability of the robot. Energy saving is the critical issue in long-range missions with underwater robots. Moreover, control allocation must be considered for a redundant system and input constraints. We propose an approach for an energy-efficient configuration and control allocation for a dynamically reconfigurable underwater robot that is built for karst exploration. The proposed method is based on sequential quadratic programming, which minimizes an energy-like criterion with respect to robotic constraints, i.e., mechanical limitations, actuator saturations, and a dead zone. The optimization problem is solved in each sampling instant. Two popular tasks for underwater robots, i.e., path-following and station-keeping (observation) problems, are simulated, and the simulation results show the efficiency of the method. Moreover, an experiment is carried out to highlight the results. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23125439 |