Influence of Continuous Training on Atrial Myocytes IK1 and IKAch and on Induction of Atrial Fibrillation in a Rabbit Model
Background. Elucidation of mechanisms underlying continuous training-related atrial fibrillation (AF) may inform formulation of novel therapeutic approaches and training method selection. This study was aimed at assessing mechanisms underlying continuous training-induced AF in an animal model. Metho...
Gespeichert in:
Veröffentlicht in: | Cardiology research and practice 2018-01, Vol.2018 (2018), p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background. Elucidation of mechanisms underlying continuous training-related atrial fibrillation (AF) may inform formulation of novel therapeutic approaches and training method selection. This study was aimed at assessing mechanisms underlying continuous training-induced AF in an animal model. Methods. Healthy New Zealand rabbits were divided into three groups (n=8 each), namely, control (C), and moderate intensity (M), and high intensity (H) continuous training according to treadmill speed. Atrial size andintrinsic and resting heart rates were measured by transthoracic echocardiography before, and 8 and 12 weeks after training. Using a Langendorff perfusion system, AF was induced by S1S2 stimulation and the induction rate was recorded. Atrial IK1 and IKAch ion current densities were recorded using whole-cell patch-clamp technique in isolated atrial myocytes. Changes in atrial Kir2.1, Kir2.2, Kir3.1, and Kir3.4 mRNA expression were assessed by reverse transcriptase-coupled polymerase chain reaction. Results. After 8 and 12 weeks, Groups M and H vs. Group C had greater (all P |
---|---|
ISSN: | 2090-8016 2090-0597 |
DOI: | 10.1155/2018/3795608 |