Miniaturized Multiband Metamaterial Antennas With Dual-Band Isolation Enhancement
We present electrically small, multi-band, metamaterial-inspired antennas with adequate radiation characteristics and isolation enhancement. The antenna element consists of a complementary split-ring resonator (CSRR) embedded in a small monopole that has a size of \lambda /8\,\,\times \,\,\lambda /...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.64952-64964 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present electrically small, multi-band, metamaterial-inspired antennas with adequate radiation characteristics and isolation enhancement. The antenna element consists of a complementary split-ring resonator (CSRR) embedded in a small monopole that has a size of \lambda /8\,\,\times \,\,\lambda /10 at the lowest frequency band, while rectangular patches are placed underneath it to further improve the performance. The antenna operates at the 2.4-2.5/2.9-4.8/5.1-6.5 GHz frequency bands. Moreover, we propose a systematic, metamaterial-based approach in order to improve the isolation between two of these small, closely spaced antenna elements at the lowest and highest frequency bands. The proposed techniques reduce the coupling by up to 29 dB without increasing the size of the structure. In particular, the isolation enhancement at the highest frequency band of interest is remarkably wideband. The cable effect, which is a common concern during the measurements of small antennas, is examined as well. The proposed antennas are not only small but also densely packed and can be easily integrated with modern, compact communication devices with advanced functionality. Simulations along with experimental results validate the effectiveness of our design. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2022.3183800 |