Proteome effects of genome-wide single gene perturbations

Protein abundance is controlled at the transcriptional, translational and post-translational levels, and its regulatory principles are starting to emerge. Investigating these principles requires large-scale proteomics data and cannot just be done with transcriptional outcomes that are commonly used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-10, Vol.13 (1), p.6153-6153, Article 6153
Hauptverfasser: Öztürk, Merve, Freiwald, Anja, Cartano, Jasmin, Schmitt, Ramona, Dejung, Mario, Luck, Katja, Al-Sady, Bassem, Braun, Sigurd, Levin, Michal, Butter, Falk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein abundance is controlled at the transcriptional, translational and post-translational levels, and its regulatory principles are starting to emerge. Investigating these principles requires large-scale proteomics data and cannot just be done with transcriptional outcomes that are commonly used as a proxy for protein abundance. Here, we determine proteome changes resulting from the individual knockout of 3308 nonessential genes in the yeast Schizosaccharomyces pombe . We use similarity clustering of global proteome changes to infer gene functionality that can be extended to other species, such as humans or baker’s yeast. Furthermore, we analyze a selected set of deletion mutants by paired transcriptome and proteome measurements and show that upregulation of proteins under stable transcript expression utilizes optimal codons. Protein abundance is controlled at the transcriptional, translational and posttranslational levels. Here, Öztürk et al. determine proteome changes resulting from individual knockout of 3308 nonessential genes in the yeast S. pombe , infer gene functionality, and show that protein upregulation under stable transcript expression utilizes optimal codons.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-33814-8